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Abstract. High-Reynolds-number (Re) flow containing closed streamlines (Prandtl-Batchelor flows), within a
region enclosed by a smooth boundary at which the boundary conditions are discontinuous, is considered. In spite
of the need for local analysis to account fully for flow at points of discontinuity, asymptotic analysis for Re� 1
indicates that the resulting mathematical problem for determining the uniform vorticity(!0) in these situations,
requiring the solution of periodic boundary-layer equations, is in essence the same as that for a flow with continuous
boundary data. Extensions are proposed to earlier work [3] to enable!0 to be computed numerically; these require
coordinate transformations for the boundary-layer variables at singularities, as well as a two-zone numerical
integration scheme. The ideas are demonstrated numerically for the classical circular sleeve.
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1. Introduction

It is now well-established that a steady, two-dimensional laminar high-Reynolds-number (Re)
flow with closed streamlines, driven by the motion of the boundary surrounding it, will contain
viscous boundary layers which enclose inviscid patches of constant vorticity [1]. A question
of considerable interest in such situations is whether the value of the constant vorticity,!0, can
be determined by asymptotic means for Re� 1, since its calculation ensures the mathematical
closure of the flow under consideration.

Methods for evaluating the value of!0 have been derived already, although under certain
restrictions. For flows on the interior of a smooth boundary, subject to continuous boundary
conditions, Riley [2] and Vynnycky [3] have presented methods which both inevitably require
the numerical integration of periodic boundary-layer equations, but which differ in the way
they use the converged data. Riley’s method exploits the fact that the solution has to be
obtained numerically, with a finite computational domain being used to approximate a semi-
infinite region, to derive a numerical matching condition for the shear stress at the outer
boundary of the domain. Vynnycky’s method, on the other hand, involves the derivation of an
integral constraint from the area integral of the Navier-Stokes equations which containsO(1)
andO(Re�1=2) terms which can be determined after theO(1) boundary-layer equations have
been solved. Agreement between the methods is found to be very good for flows inside a family
of ellipses with eccentricity as high as 0�77; in addition, actual Navier-Stokes computations
carried out by Haddon and Riley [4], and extrapolated in the limit as Re! 1, indicate
quantitative agreement with the asymptotic methods.

In addition to this approach, which seeks to solve the boundary-layer equations fully, an
alternative route has been pursued by Lyne [5] and Chernyshenko [6] for dealing with flows
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142 M. Vynnycky

Figure 1. Geometry for closed-streamline flow.

within boundaries containing (i) discontinuous boundary conditions; (ii) corners or cusps;
and (iii) mixing layers. These authors solve a linearised form of the boundary-layer equations
in order to determine!0, and the method has subsequently been used by Chernyshenko [7,
8] and Chernyshenko and Castro [9, 10] in a variety of problems involving flow separation,
thereby clarifying certain issues concerning the asymptotic structure of flow past a bluff body
[11–13]. Nonetheless, the onlyexacttreatment of periodic boundary-layer equations remains
that due to Riley [2] and Vynnycky [3], and an important question to ask is whether their
methods can be adapted to problems containing any of (i), (ii) or (iii), all the more so since
Prandtl-Batchelor flows containing these difficulties continue to attract significant attention
[14–19]. In this paper, the main focus of attention is (i).

Both [2] and [3] express reservations concerning the evaluation of!0 in flows when the
driving boundary condition is discontinuous, however. Hitherto, the only regime where this has
been possible has been for the circular sleeve considered by Batchelor [1], for which numerical
computations were not even necessary. We formulate this class of problem in Section 2, and
identify discontinuities in boundary conditions as being a generalization of those in classical
external flow past a finite plate. In order to obtain the full flow details for that problem, local
analysis is necessary in the vicinity of the leading and trailing edges of the plate; to be sure,
an analogous procedure would be necessary for interior flows. By considering the circular
sleeve as a test problem, it is demonstrated that these local details are not actually necessary
for determining!0; all that is required is the analytical inclusion, by means of a two-zone
calculation scheme, of the tiered flow-structure downstream of a discontinuity. An alternative,
simpler, criterion to that used in [3] is derived and applied in order to determine!0.

2. Formulation

2.1. EQUATIONS

Consider a regionS surrounded by a smooth closed curveC, as in Figure 1. The steady motion
of C, across which it is assumed there is no normal outflow, induces a high-Re flow withinS.
Furthermore, the tangential motion ofC is prescribed in terms of the streamwise velocity on a
portion(C1) of C and in terms of the shear stress on the remainder(C2); the flow is assumed
not to separate, and all streamlines are closed. The dimensionless governing flow equations in
primitive-variable formulation are then

r � u = 0; (u � r)u = �rp+ �2r2u: (2.1a,b)

whereu is the velocity vector,p is the pressure and�(= Re�1=2) is, as usual, the boundary-
layer thickness; here, the Reynolds number is given by Re= �Ud=�, where� is the fluid
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Closed-streamline flows 143

density,U is a typical velocity scale,d is a typical length scale for the regionS and� is the
coefficient of viscosity.

As for the boundary conditions, the requirement for no normal outflow is given by

uini = 0 on C; (2.2)

and that for the tangential flow by

uiti = Uc on C1; (2.3a)

and

@ui

@ni
= �C on C2; (2.3b)

here(ni)i=1;2 are the Cartesian components of the outward normal,n to C; (ti)i=1;2 are the
components of the tangent,t, to C; (ui)i=1;2 the components of the velocity vectoru, and
UC and�C are functions of the arc length ofC which may have jump discontinuities onC1

andC2 respectively, and which denote the prescribed tangential velocity and shear stress,
respectively.

Now, introduce the core stream function, vorticity, pressure and velocity component expan-
sions as

 =  0 + � 1 +O(�2); ! = !0 + �!1 +O(�2); p = p0 + �p1 +O(�2);

ui = u0i + �u1i +O(�2); i = 1;2

and the asymptotic expansions for the boundary-layer streamfunction, tangential velocity and
pressure(	; U; P , respectively), as

	 = 	0 + �	1 +O(�2); U = U0 + �U1 +O(�2); P = P0 + �P1 +O(�2);

it is well-known from the Prandtl-Batchelor theorem that!0 is a constant, which is unknown
a priori. For the boundary layer atC, we have at leading order (dropping the subscripts on
	0)

	N	Ns �	s	NN = !2
0u1 _u1 +	NNN ; (2.4)

where( _ ) denotes differentiation with respect to the arc lengths, andN is the boundary-layer
coordinate along the inward normal toC, wherejnj � �, so thatN � O(1); here, the rescaled
stream function,	, is related to by  = �	. The boundary conditions for the boundary
layer are

	 = 0 on N = 0; (2.5a)

	N ! !0u1(s) as N !1; (2.5b)

and the flow-driving condition given by

	N = UC(s) on N = 0; 0 6 s 6 sC1 (2.5c)
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144 M. Vynnycky

and

	NN = �C(s) on N = 0; sC1 < s 6 L; (2.5d)

whereL denotes the total length of the curveC andsC1 denotes the length ofC1; in (2.5b),
u1(s) is the canonical tangential velocity atC derived from ̂ := !0 , so that

u1(s) =

 
@ ̂

@ni
ti

!
C

: (2.6)

We also expect the periodicity requirement

	(0; N) = 	(L;N); 8N > 0; (2.7)

in addition to which a constraint on!0, as given either by Riley [2] or Vynnycky [3], determines
!0 uniquely, thus closing the problem.

Without loss of generality, take a reference point,O, onC to be at one of the common
points ofC1 andC2, and consider any point onC at which the flow-driving boundary condition
is discontinuous (call itD and denote bysD the distanceOD); D may either be one of the
pointsC1 or C2, or one of the points withinC1 andC2 at whichUC or �C , respectively, are
discontinuous. The situation atD is a generalization of that at either the leading or trailing
edge of a finite flat plate, as considered by Goldstein [20]. In the latter case, it is well-known
that the attached flow strategy holds, with the Blasius’ boundary layer upstream giving way
to the Goldstein near-wake solution downstream, provided there is a triple-deck region of
streamwise extentO(Re�3=8) in which the singularity that is induced in the pressure, as a
result of the switch from a no-slip to a no-shear boundary condition, is accommodated. In the
former case, which constitutes the start of the Blasius’ boundary layer, the singularity at the
leading edge is treated by means of a square region of extentO(Re�1)�O(Re�1); with both
singular points accounted for, subsequently, there is essentially no difficulty in treating the
flow field hierarchically in terms of asymptotic expansions for the flow variables.

To incorporate these ideas into the present interior problem, we note first that, for the
leading edge of the classical problem,UC(sD�) = 1; UC(sD+) = 0 whilst for the trailing
edge,UC(sD�) = 0; �C(sD+) = 0. Thus, the classical problem contains two out of a host of
possible combinations in whichUC and�C can be permuted upstream and downstream ofsD,
each requiring individual analytical treatment. At first glance, we might conjecture that there
are 14 possibilities, which arise from permuting

UC(sD�) 6= 0; UC(sD�) = 0; �C(sD�) 6= 0; �C(sD�) = 0

with their equivalents forsD+, but subtracting the two cases where

UC(sD�) = UC(sD+) = 0; �C(sD�) = �C(sD+) = 0:

In reality, there are fewer cases to consider since the analysis for the case where�C(sD�) is
prescribed will lead to the same treatment of the discontinuity as does the case forUC(sD�) 6=
0; however, as we shall see later, there is a significant difference between the cases

UC(sD�) 6= 0; UC(sD+) = 0; and UC(sD+) 6= 0; UC(sD�) = 0:
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Closed-streamline flows 145

We do not intend to examine the structures for all cases, but instead to verify these ideas
for the only case in which an analytical solution is known: the circular sleeve. To keep the
development as general as possible, we first formulate a generic sleeve-type problem, based
on Batchelor’s [1], in which a part of the boundaryC is at rest, while the rest is taken to move
with a general slip velocityUs.

3. A generalized sleeve

Assume without loss of generality that the no-slip boundary lies betweens = s1(:= 0) and
s = s2, so that

UC(s) =

(
0 if s1 6 s 6 s2;

Us(s) if s2 6 s 6 L;
(3.1)

here,Us is taken to be a continuous function ofs which is positive fors2 < s < L, and is
such thatUs(s1) > 0; U(s2) > 0. Also, for later use, define by(Rj ;�j)j=1;2 local plane polar
coordinates which are centred on the points ats = (sj)j=1;2, respectively; in particular, define
each�j in such a way that�j ! 0 ass! sj+; and�j ! � ass! sj� so that for all points
on and withinC;0 6 �j 6 �.

3.1. THE DISCONTINUITY AT s = s1

In order to accommodate the change in boundary condition ats= s1, a two-tier flow structure is
required downstream; in the lower tier,N=(s�s1)

1=2 � O(1), whilst in the upper,N � O(1).
Introducing the substitutions

	 = (s� s1)
1=2F (s; �); � = N

�
�1

s� s1

�1=2

; (3.2)

where�1 = min(1; s2� s1) (for reasons to be explained later), we observe that (2.4) becomes

�
1=2
1 F 000 +

�
s� s1

�1

�
!2

0u1 _u1 + 1
2FF

00 = (s� s1)

�
F 0
@F 0

@s
� F 00

@F

@s

�
; (3.3)

where(0) denotes differentiation with respect to�. Introducing further the expansion

F = F0(�) + (s� s1)
1=2F1(�) + (s� s1)F2(�) + � � � ; (3.4)

for the lower tier, and

	 = 	0(N) + (s� s1)
1=2	1(N) + (s� s1)	2(N) + � � � ; (3.5)

for the upper, we consider the limit ass! s1+. For(s� s1)
0, (3.3) reduces to

�
1=2
1 F 0000 + 1

2F0F
00

0 = 0; (3.6)

subject to

F0(0) = 0; F 0

0(0) = 0; F 0

0(1) = Us(s1�)�
�1=2
1 ; (3.7a,b,c)
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146 M. Vynnycky

with the last equation coming from matching to the upper tier. For the purposes of verifying
the numerical scheme, to be introduced later, it is also worth determining	1, as follows.
Substituting (3.5) in (2.4), we equate the leading terms atO(s� s1)

1=2 to obtain

	0N	1N �	0NN	1 = 0; (3.8)

which gives

	1(N) = A1	0N ; (3.9)

whereA1 is a constant which comes from matching the upper and lower tiers at(s� s1)
1=2;

more specifically,

A1 =
C
(1)
0

Us(s1�)
; (3.10)

where

C
(1)
0 = �

�1=2
1

Z
1

0
(Us(s1�)� �

1=2
1 F 0

0)d�; (3.11)

these two equations being valid even if the boundary fors = s1+ were not at rest. The fact
that it is at rest, however, ensures a canonical solutionF̂0(�̂), where

F̂0 = Us(s1�)
�1=2F0; �̂ =

�
Us(s1�)

�1

�1=2

�;

for the present case then,

C
(1)
0 = 1�7208(Us(s1�))

1=2; (3.12)

whence

A1 = 1�7208(Us(s1�))
�1=2: (3.13)

Note here that the introduction of�1 was optional, but its inclusion proves useful for the
numerical scheme and later generalizations. Furthermore,F1 is given by the solution to

�
1=2
1 F 0001 + 1

2(F0F
00

1 � F
0

0F
0

1) + F1F
00

0 = 0; (3.14)

subject to

F1(0) = 0; F 0

1(0) = 0; F1 �
1
2	0NN (0)�

2; as � !1: (3.15a,b,c)

Equations for the higher terms in both expansions can be derived in similar fashion.
The situation is now similar to that for the leading edge of a Blasius plate, except that the

incoming velocity profile is not uniform. Nonetheless, the change in boundary conditions still
induces fractional algebraic behaviour in 1, even though 1 in this case is not irrotational;
the required details are determined as follows. The function 1 can be decomposed into
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Closed-streamline flows 147

an irrotational part, ̂1, which satisfies boundary conditions that are induced by theO(1)
boundary-layer flow, that is

 ̂1 = �

Z
1

0
(	N (s;1)�	N (s;N))dN on C; (3.16)

and a rotational part, �1, which has constant vorticity,!1, and satisfies homogeneous boundary
conditions (see [3] and Appendix A). �1 is simply a constant multiple of 0 and therefore
exhibits no singular behaviour atC, so the focus of attention iŝ 1. Using (3.9)–(3.16), we
arrive at

 ̂1 � �

Z
1

0
(	N (s1;1)�	N (s1; N))dN +A1(s� s1)

1=2; (3.17)

for the behaviour of̂ 1 ass! s1+ , whereA1 = A1	0N (1).
NearR1 = 0,

 ̂1 +

Z
1

0
(	0N (1)�	0N (N))dN � A1R

1=2
1 cos

�1

2
; (3.18)

from which it follows that, sincep1 is given by

p1 = �(u0iu1i + !0 1 + !1 0); (3.19)

we have

p1 � �
1
2A1[	0N (1)]2(s� s1)

�1=2: (3.20)

In this case, the induced pressure force becomes comparable with the leading order inertial
forces(	N	Ns � (s� s1)

�1) when

s� s1 = O(Re�1): (3.21)

Thus, a squareO(Re�1) � O(Re�1) region, in which the full Navier-Stokes equations hold,
is required around the discontinuity; such a problem has been solved numerically by Van de
Vooren and Djikstra [21]. We comment further on this region’s significance in Section 3.3.

3.2. THE DISCONTINUITY AT s = s2

At s = s2, the transition from a no-slip to slip boundary condition also requires a transfor-
mation to similarity variables in the form given by (3.2), except with�1 ands1 replaced by
�2 = min(1; L� s2) ands2 respectively, so that for(s� s2)

0 we arrive at

�
1=2
2 F 0000 + 1

2F0F
00

0 = 0; (3.22)

subject to

F0(0) = 0; F 0

0(0) = Us(s2+)�
�1=2
2 ; F 00(1) = 0: (3.23a,b,c)
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148 M. Vynnycky

It is now evident that expansions in(s� s2)
1=2 of the form given by (3.4) and (3.5) cannot be

valid, because lower and upper tier terms at(s� s2)
1=2 could not then match; more precisely,

F0 has the property that

F0 � C
(2)
0 = 1�6128(UC(s2+))

1=2 as � !1; (3.24)

where

C
(2)
0 = �

�1=2
2

Z
1

0
(�

1=2
2 F 0

0� Us(s2+))d�; (3.25)

whereas (3.9) vanishes asN ! 0. Instead, the appropriate expansions are

F = F0(�) + (s� s2)
1=4F1(�) + (s� s2)

1=2F2(�) + � � � ; (3.26)

for the lower tier, and

	 = 	0(N) + (s� s2)
1=4	1(N) + (s� s2)

1=2	2(N) + � � � ; (3.27)

for the upper. Substitution of (3.27) in (2.4) again gives (3.8) and (3.9), although this time at
O(s� s2)

�3=4. At O(s� s2)
�1=2, we obtain

	0N	2N �	2	0NN = 1
2(	1	1NN �	2

1N ); (3.28)

which can be solved for	2 to give

	2 = A2	0N + 1
2A

2
1	0NN ; (3.29)

whereA2 is a constant that could be determined by matching higher order terms in the
asymptotic expansions; matching upper and lower tiers at(s� s2)

1=2 gives

A1 =

 
2C(2)

0

	0NN (0)

!1=2

: (3.30)

This provides the constant necessary to findF1 which is given by the solution of

�
1=2
1 F 0001 + 1

4(2F0F
00

1 � F 0

0F
0

1) +
3
4F1F

00

0 = 0; (3.31)

subject to

F1(0) = 0; F 0

1(0) = 0; F1 � A1�; as � !1: (3.32a,b,c)

For the behaviour of̂ 1 ass! s2+ , we have

 ̂1 � �

Z
1

0
(	0N (1)�	0N (N))dN +A2(s� s2)

1=4; (3.33)

whereA2 = A1	0N (1) and nearR2 = 0,

 ̂1 +

Z
1

0
(	0N (1)�	0N (N))dN � A2R

1=4
2 cos1

4�2; (3.34)
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Closed-streamline flows 149

thence

p1 � �
1
4A1[	0N (1)]2(s� s2)

�3=4; (3.35)

so that the induced pressure and inertia forces become comparable when

Re�1=2(s� s2)
�7=4 � (s� s2)

�1; (3.36)

i.e.

s� s2 � Re�2=3: (3.37)

This suggests that the details of a square region of extentO(Re�2=3) �O(Re�2=3) will have
to be considered for a full description of the flow, although this proves to be unnecessary for
the purposes of this paper.

3.3. DISCUSSION

Since the length scales of the square regions at both discontinuities are much smaller than
that of the boundary-layer thickness, it seems plausible to assume that the starting velocity
profile for the flow downstream of the discontinuity should simply be taken as the incoming
velocity profile just upstream; the situation is then the same as that which occurs when
discontinuities are not present. In this sense, there is no actual need to solve the problems
outlined in Sections 3.1 and 3.2 for theO(Re�1) � O(Re�1) andO(Re�2=3) � O(Re�2=3)
regions, respectively. As regards the method of [2], no further preliminaries are required
prior to proceeding to a numerical solution from which!0 may be determined. As a simpler
alternative to [3], however, the following is proposed.

We note first, using [2], that the behaviour of	 asN !1 may be written as

	 � N!0u1(s) + f(s) + o(1);

wheref is given by

f(s) = �

Z
1

0
(!0u1(s)�	N )dN:

Then, taking the first integral with respect toN of (2.4) over[0;1) and rearranging, we
obtain

@

@s

�Z
1

0
(	2

N � !2
0u

2
1
(s))dN

�
� !0u1(s) _f(s) = �	NN (0; s); (3.38)

whence taking the integral aroundC givesI
C
(	NN (0; s) + !0 _u1(s)f(s))ds = 0; (3.39)

since the first term of the left-hand side of (3.38) vanishes, while the second may be integrated
by parts. Consequently,!0 can be determined from the solution of the viscous boundary-layer
equations at leading order alone, without recourse to the flow field atO(�).
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4. Numerical method

The numerical task at hand then is to solve (2.4) subject to the boundary conditions (2.5a),
(2.5b) and (3.1), and the periodicity requirement (2.7), although the presence of discontinuities
in boundary conditions requires modifications to the boundary-layer solvers used previously
by Riley [2] and Vynnycky [3]; here, we propose to extend the latter. From Section 3, it is
evident that flow downstream of each discontinuity will be two-tiered in nature; the numerical
treatment of such flows is not unknown (for example, Smith [22], Veldman [23], Cebeciet
al. [24]). In those problems, a ‘working’ solution can still be obtained for no-slip to no-shear
boundary-condition changes by simply marching with the same independent variables as were
used upstream of the discontinuity, in the sense that judicious mesh refinement downstream
of the discontinuity may still give acceptable results; however, a two-zone scheme to take
account of the discontinuity is unavoidable for the sleeve problem, because of the square-root
singularity in the shear stress, as shown in Section 3.1 and 3.2.

As in [3], a Keller-Box discretisation [25, pp. 213–234] was used to discretise the governing
equations, which were expressed in differing variables depending on the value ofs atC. For
s1 6 s 6 s1 + �1, (3.3) was discretised for the lower tier, whilst (2.4) was used for the upper;
for s2 6 s 6 s2 + �2, (2.4) was again used for the upper, whilst (3.3), with the appropriate
replacements for�2 ands2, was used for the lower. On all remaining portions ofC, (2.4)
only was used, the introduction of�1 and�2 now being apparent, since the fact that� � N

ats = s1 + �1 ands = s2 + �2 ensures a tidy transition from two-zone to physical variables.
The manner in which, in the two-zone region, the upper and lower tiers are matched has
been discussed in detail before [24], so we omit the majority of the details here; the only
difference arises because the similarity variables used are different, so that the numerical
matching conditions here are, forj = 1;2,

	

0
@s; �1

 
s� sj

�j

!1=2
1
A = (s� sj)

1=2F (s; �1); (4.1a)

	N

0
@s; �1

 
s� sj

�j

!1=2
1
A = �

1=2
j F�(s; �1); (4.1b)

	NN

0
@s; �1

 
s� sj

�j

!1=2
1
A =

�j

(s� sj)1=2
F��(s; �1); (4.1c)

where�1 denotes the position of the interface between the upper and lower regions, which is
given in the physical(s;N)-plane by

N = �1

 
s� sj

�j

!1=2

:

Throughout, uniform spacing was used for theN -direction, as well as fors-values lying in
the one-zone calculation region; for each of the two-zone regions(j = 1;2), uniform spacing
in (s� sj)

1=2 was used.
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Closed-streamline flows 151

For an arbitrary value of!0, the integration procedure was started ats = s1 by prescribing
some initial profile for	, such as

	 = Us(s1�)N + (!0u1(s1)� Us(s1�))(N + e�N � 1); (4.2)

in the upper tier, andF0, given by the solution to (3.6) and (3.7a)–(3.7c), forF in the lower;
onces = s2 has been reached,F0 given by (3.22) and (3.23a)–(3.23c) is used to start up
the lower tier. The integration was continued until the periodicity condition (2.7) had been
satisfied to within a given tolerance; for most runs, 10�6 was used.

To iterate for!0, Brent’s method, as given in [26, pp. 251–254], was used as a faster
alternative to the bisection method used in [3]; once the root for!0 has been bracketed, only
three or four iterations are required to satisfy (3.39) to within a tolerance of 10�7. Lastly comes
the question of evaluating the integrals in (3.39). The asymptotic behaviour for	NN (0; s) at
each of the points of discontinuity is given, from Sections 3.1 and 3.2, by

	NN (s;0) �
0�33206(Us(s1�))

3
2

(s� s1)1=2
; as s! s1+; (4.3a)

	NN (s;0) � �
0�44385(Us(s2+))

3
2

(s� s2)1=2
; as s! s2+: (4.3b)

These can be subtracted off from	NN (0; s), and their contribution to (3.39) evaluated analyt-
ically. The remaining integrand is then finite-valued and can be evaluated using, for example,
the alternative extended Simpson’s rule [26, pp. 108].

5. Solution for the circular sleeve

WhenC is taken to be a circular boundary, it is known [1] that the core vorticity is given by

Z 2�

0
U2
C(s)ds = !2

0

Z 2�

0
u2
1
(s)ds; (5.1)

in particular, if part of the boundary is at rest and the remainder moves with constant tangential
velocity!C=2, then

!0 = !C(1� �)1=2; (5.2)

where 0< � < 1 is the proportion of the boundary that is at rest. Our intention, therefore,
is to work towards the result of Equation (5.2) using the preceding ideas, which can then be
applied for non-circular boundaries where (5.1) no longer holds, as well for more general
discontinuous driving boundary conditions.

For a circle, the core streamfunction atO(1) is just

 0 =
1
2!0(1� r2); (5.3)

so thatu1(s) = 1
2. Furthermore, since_u1(s) � 0, (3.39) reduces in this case to just

I
C
	NN (0; s)ds = 0: (5.4)
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We sets2 = 2��;L = 2� andUs(s) � !C=2, and consider in particular a sleeve of unit
length, so that� = 1=2�, with

!C =
2�

1� 1
2�

�1=2
; (5.5)

thus, we expect!0 = 2. The location of the outer edge of the boundary layer,N1, was set
to 20, this value having already been found in earlier work [2, 3] to be more than adequate to
take account of the e�N decay in the tangential velocity; computations were carried out using
two mesh spacings(�N) for theN -direction,�N = 1

50;
1
25, with Richardson extrapolation

in �N then being used to determine!0 more accurately. For the two-zone regions, these were
also the mesh spacings used for��, the outer edge of the lower zone(�1) being taken at
�1 = 10. This value needs to be sufficiently large to give the correct asymptotic behaviour
as� ! 1 for the starting similarity solutions just downstream of each boundary-condition
discontinuity. This, in turn, may be assessed by monotoring the quantitiesF̂ 000 (0) andĈ(j)

0 for
j = 1;2, where

Ĉ
(1)
0 = C

(1)
0 =Us(s1�); Ĉ

(2)
0 = C

(2)
0 =Us(s2+);

in particular, with�1 = 10;�N = 1
25, we find forj = 1,

F̂ 000 (0) = 0�33205; Ĉ
(1)
0 = 1�7209

compared with the theoretical values 0�33206 and 1�7208 respectively, whilst forj = 2

F̂ 000 (0) = �0�44384; Ĉ
(2)
0 = 1�6128

compared with the theoretical values�0�44385 and 1�6128 respectively.
Furthermore, for the�N -values given above, the integration in the two-zone region begins

with around 750 and 1500 points respectively, with one point being dropped from the upper
zone at each step ins. Taking the order of 102 points in s for s-stations in the one-zone
region, we have the order of 103 points for the whole ofC. Setting a tolerance of 10�5 in
the Newton iteration at each step for(	;	N ;	NN ) across the boundary layer, around 30
seconds of CPU time on a Cray Supercomputer was required to integrate aroundC once for
�N = 1

50; on average, around 50 loops were required to satisfy the periodicity criterion to
within a tolerance of 10�6, giving a total of around 1300 CPU seconds for one value of!0.
The total time required, once Brent iteration had been implemented, was of the order of 5000
CPU seconds, with far fewer loops being required for a new value of!0, since integration
could be started with the most-recently computed	-profile, rather than (4.2).

The results of computations, as well as an extrapolation, are compared with the theoretical
value in Table 1. Agreement is found to be good, although one reminder is necessary concerning
theh2-extrapolation. This had been carried out for the mesh spacing inN only (and not in
bothN ands as in [2, 3]), since a mesh which is non-uniform ins has to be used. Thus, we
should not expect anO(h2) error behaviour with respect to the theoretical value, although
presumably computations with mores-stations should yield results whose extrapolation (in
�N ) should approach the theoretical value even more closely; however, we do not pursue this
any further here.
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Table 1. Comparison of analytical and
computed values for!0.

!0

�N = 1
25 2�0021

�N = 1
50 2�0011

extrapolated 2�0008
theoretical 2�0

Figure 2. I1 as a function of!0 for N1 = 20; 30(�N = 1
50;

3
100, respectively).

Additional runs were carried out forN1 = 30 with 1001 points in theN -direction,
primarily to verify the dependence ofI1, defined

I1(!0) :=
I
C

����� @
2	

@N2

�����
N=N1

ds; (5.6)

onN1; this behaviour, in the vicinity of!0 = 2, is given in Figure 2. As one would expect
(cf. [2]), I1 is found to decrease with increasingN1. Clearly evident here is the presence of
a minimum close to!0 = 2 which constitutes the required root; for this value of!0, I1 is
of the order of 10�6 for both values ofN1, so that the two points overlap on the diagram.
A more systematic approach to determine!0 more accurately would involve using Brent’s
method, for example, to solve

dI1
d!0

= 0; (5.7)

although this was not done here in the interests of minimising computational expense. Note
here, incidentally, the relation between the two criteria, (5.4) and (5.7). In considering the
numerical implementation of (5.4), one might argue that because a finite computational
domain is being used, the correct condition should beI

C
	NN (0; s)ds =

I
C
	NN (N1; s)ds; (5.8)
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Table 2. Comparison of ana-
lytical and numerical values
of constants in Equation (5.8)
for !0 = 2�0011(N1 =
20;�N = 1

50):

numerical analytical

�1 0�5001 0�5
A1 �1�6500 �1�6487
�2 0�2481 0�25
A2 3�0726 2�8307

thus, one would expect the constraints (5.7) and (5.4) to agree on the root for!0.

Figure 3. 	NN at N = 0 vs. s for !0 =
2�0010(N1 = 20;�N = 1

50).
Figure 4.  1 at C vs. s for !0 = 2�0010(N1 =

20;�N = 1
50).

Figures 3 and 4 show, respectively, the shear stress	NN and ̂1 atN = 0 for �N = 1
50

with !0 = 2�0011. In the first case, the square root singularities in	NN downstream of the
discontinuities are evident; in the second, we see that ̂1 has a discontinuous gradient at these
points. The local behaviour of	NN atN = 0 has been incorporated into the numerical method
already thanks to the coordinate transformation, although that of ̂1, given by Equations (3.17)
and (3.33), serves as a useful check that the two-zone scheme is working correctly. Taking the
computed values of̂ 1(0; s) at s = (sj)j=1;2 and the next two mesh points downstream, and
assuming the behaviour of̂ 1(s;0) to be of the form

 ̂1(s;0) �  ̂1(sj;0) +Aj(s� sj)
�j ; j = 1;2; (5.9)

we obtain the real constants(�j ; Aj)j=1;2 and compare these with analytical values found in
Sections 3.1 and 3.2; this is done in Table 2. Agreement for the�j values is found to be good.
ForAj , the theoretical values of which are

A1 = 0�8605!0

�
1�

1
2�

�1=4

; (5.10a)
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A2 =
1
2!0

�
3�232

	0NN (0)

�1=2�
1�

1
2�

�1=8

; (5.10b)

agreement is within the order of 2% forj = 1, but not so good forj = 2; note, however, that
for A2, even the so-called theoretical value relies on the numerical computation of	0NN (0),
which only becomes available once the boundary-layer integration has reacheds2. A possible
explanation for the differing levels of agreement in the two cases may lie in the fact that
the next term in the expansion for̂ 1(s;0) at s = s1 is O(s � s1), whereas ats = s2 it is
O(s� s2)

1=2. Consequently, there is a greater likelihood that an estimate for the constant of
proportionality based on̂ 1(s;0)-values at three points will be less accurate fors2 than fors1;
viewed a different way, the two downstream points that are taken fors2 should be taken much
closer tos2 than is the case fors1, in order for the correct asymptotic behaviour to become
apparent from the numerical data.

6. Conclusion

This paper has considered closed-streamline flows which are driven by discontinuous boundary
conditions. The introduction of such discontinuities introduces both analytical and numerical
complications which are not present in flows where the boundary conditions are continuous.
Analytically, discontinuities induce a pressure gradient on the boundary layer which exceeds
that due to the Euler pressure at distances sufficiently close to the discontinuity itself; in
this case, the situation is similar to that encountered in external flow past a finite plate.
When obtaining a numerical solution, we note that it is necessary to take account of the
two-tier boundary-layer structure that appears downstream of a discontinuity by introducing
a coordinate transformation for the lower tier. These ideas have been applied to the circular
sleeve problem, which is the only case for which analytical comparison appears to be available;
however, provided the boundary layer remains attached, there seems nothing to prevent the
application of these ideas to closed-streamline flows with more general smooth boundaries
and more general discontinuous boundary conditions.

Finally, it is worth noting that interesting and challenging extensions of this work involve
its potential applicability to boundaries with corners or cusps [5, 27], as well as to flows
containing an inviscid patch of constant vorticity and a region of inviscid potential flow [28],
or flows containing more than one patch of constant vorticity [18]. With reference to the last
two, it is to be expected that boundary-layer computations should help to select the value of
!0, and hence the Euler solution, that constitutes the limiting solution of the Navier-Stokes
equations as Re!1.

Appendix A

To show that! is constant to all orders of�, it is known that for the core flow! = !( ), so
that the line integral of (2.1b), taken aroundC, in the limit as� ! 0, gives

d!
d 

I
C

q�t ds = 0; (A.1)
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whence, since this implies that d!=d = 0; ! is constant. In addition, if we write! = !0+!
�,

where!� denotes lower order terms in the asymptotic expansion of!, such thatj!�j � j!0j,
with !0 as the leading order term, we have that!� = !�( ), and thence (A.1) applies to!�

also, so that!� too is constant. Hence! is constant to all orders, as required.
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